

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH12) Paper 01

Unit 2: Waves and Electricity

Question Number	Answer	Mark
1	A is the correct answer as diffraction is the spreading of waves as they pass an object	(1)
	B is not the correct answer as interference is not the spreading of waves C is not the correct answer as reflection is not the spreading of waves D is not the correct answer as refraction is not the spreading of waves	
2	B is the correct answer as decreasing the time period increases the frequency $(f=1/T)$	(1)
	A is not the correct answer as amplitude is unaffected by time period C is not the correct answer as speed is affected by both time period and wavelength	
	D is not the correct answer as wavelength is affected by both time period and speed	
3	A is the correct answer as frequency is unchanged when travelling into a different medium	(1)
	B is not the correct answer as some of the light intensity becomes the reflected light. C is not the correct answer as the speed decreases when travelling into a more	
	optically-dense substance D is not the correct answer as the wavelength decreases when travelling into a more optically-dense substance	
4	C is the correct answer as the p.d. across a uniform wire is directly proportional to its length	(1)
	A is not the correct answer as this does not show a directly proportional relationship B is not the correct answer as this does not show a directly proportional	
	relationship D is not the correct answer as this does not show a directly proportional relationship	
5	D is the correct answer as $v = \frac{h}{\lambda m}$	(1)
	A is not the correct answer as v is not equal to $\frac{m}{h\lambda}$	
	B is not the correct answer as v is not equal to $\frac{\lambda m}{h}$	
	C is not the correct answer as v is not equal to $\frac{h\lambda}{m}$	
6	C is the correct answer as the path difference of 1.5 λ is equivalent to a phase difference of π radians	(1)
	 A is not the correct answer as 0 radians would mean that the path difference was 0, λ, 2λ etc. B is not the correct answer as π/2 radians would mean that the path difference 	
	was 0.25λ , 1.25λ etc. D is not the correct answer as $3\pi/2$ radians would mean that the path difference was 0.75λ , 1.75λ etc.	

7	D is the correct answer as coherence can only occur if the waves have the same frequency	(1)
	A is not the correct answer as coherence does not require waves to be in	
	antiphase, they just need a constant phase difference	
	B is not the correct answer as coherence does not require waves to be in phase, they just need a constant phase difference	
	C is not the correct answer as waves can still be coherent, even if their amplitudes are different.	
8	D is the correct answer as decreasing the distance between the central	(1)
	maximum and the first order maximum would require $\sin\theta$ to be reduced	
	(presuming that the distance from the diffraction grating to the screen is	
	unchanged), and $\lambda = \frac{d \sin \theta}{n}$	
	n	
	A is not the correct answer as this does not affect $\sin\theta$	
	B is not the correct answer as this would increase the distance between the	
	central maximum and first order maximum	
	C is not the correct answer as more lines per mm would make d smaller, so as	
	$d = \frac{n\lambda}{\sin\theta}$, which would make $\sin\theta$ increas	
9	A is the correct answer. The power of the Sun is constant, so IA is constant for all the planets. $I_{\rm E} \times 4\pi \ (1.49 \times 10^{11} \ {\rm m})^2 = I_{\rm J} \times 4\pi \ (7.78 \times 10^{11} {\rm m})^2$	(1)
	B is not the correct answer as 4π cancels in the equation	
	C is not the correct answer as the radius of orbit has not been squared	
	D is not the correct answer as 4π cancels in the equation and the radius of the	
	orbit has not been squared	
10	A is the correct answer as decreased temperature results in a decrease in lattice vibrations	(1)
	B is not the correct answer as this would only happen if the temperature increased	
	C is not the correct answer as a filament is not a semiconductor	
	D is not the correct answer as a filament is not a semiconductor	

Question Number	Answer	Mark
11(a)	Calculates total charge (1)	
	Use of $I = \Delta Q/\Delta t$ (1)	
	I = 1.28 (A)	3
	(MP3 – allow minus sign on answer) Example of calculation Total charge = $4.80 \times 10^{20} \times 1.60 \times 10^{-19}$ C = 76.8 C $Q = It$, so $I = 76.8$ C / 60 s = 1.28 A	
	Q = H, so $I = 70.0 C / 00 S = 1.20 H$	
11(b)	Use of $V = W/Q$ or $W = VIt$ (1)	
	Potential difference = $0.31 \text{ V (e.c.f. from (a))}$ (1)	
	OR	
	Use of $P = W/t$ and $P = VI$ (1)	
	Potential difference = $0.31 \text{ V (e.c.f. from (a))}$ (1)	2
	("show that" value also gives 0.31 V) (allow answer of 0.3V)	
	(e.c.f. can be for I or Q value from (a))	
	Example of calculation $V = W / It = 24 \text{ J} / (1.28 \text{ A} \times 60 \text{ s}) = 0.31 \text{ V}$	
	Total for question 11	5

Question Number	Answer		Mark
12(a)	$\varepsilon = 1.50 \text{ V} \text{ (accept answers in the range } 1.48 \text{ V to } 1.52 \text{ V)}$	(1)	
	Attempt to calculate gradient of graph to find r	(1)	
	$r = 0.75 \Omega$ (accept answers in the range 0.72 Ω to 0.78 Ω)	(1)	3
12(b)	Gradient is doubled	(1)	
	y-intercept is doubled	(1)	2
	(If no other marks scored, allow "new graph has steeper gradient and y-intercept has a greater value" for 1 mark)		
	(If no other marks scored, allow new values for ε and r , consistent with their answers to (a))		
	Total for question 12		5

Question Number	Answer		Mark
13(a)	Angles as 43° and 65° (+/- 1°)	(1)	
	Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (allow use of $n = \frac{\sin i}{\sin r}$)	(1)	
	Refractive index in range 1.29 to 1.37	(1)	3
	(MP3 dependent on MP1)		
	Example of calculation		
	$n_1\sin\bar{\theta_1}=n_2\sin\theta_2$		
	$n_1 \times \sin(43^\circ) = 1.00 \times \sin(65^\circ)$		
	$n_1 = 1.33$		
13(b)(i)	Unpolarised light has vibrations/oscillations in many/all planes	(1)	
	Plane polarised light has vibrations/oscillations in one plane only	(1)	
	Including the direction of wave travel	(1)	
	OB		
	OR Unpolarised light has vibrations/oscillations in many/all directions	(1)	
	Plane polarised light has vibrations/oscillations in one direction only	(1)	
	Perpendicular to the direction of wave travel	(1)	3
	(MP3 dependent on either MP1 or MP2) (MP3 – for "direction of wave travel" allow "direction of energy transfer" or "direction of propagation")		
13(b)(ii)	(Polarising) filter is rotated	(1)	
	Filter not aligned with plane of reflected light, so less light transmitted	(1)	
	OR		
	(Polarising) filter positioned at 90°	(1)	
	to the plane of the reflected light, so no light transmitted	(1)	
	OR		
	Place (polarising) filter so that it its plane of polarisation is vertical	(1)	
	Horizontally polarised (reflected light) is not transmitted	(1)	2
	(Maximum 1 mark if using two filters)		
	Total for question 13		8

Question Number	Answer					N	Mark
*14	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.						
	IC points	IC mark	Max linkage ma	rk	Max final mark		
	6	4	2		6		
	5	3	2		5		
	4	3	1		4		
	3	2	1		3		
	2	2	0		2		
	1	1	0		1		
	0	0	0		0		
	The following lines of reason		now the marks shou		awarded for structure and	_	
				stru	nber of marks awarded for cture of answer and ained line of reasoning		
	structure wit		and logical I fully sustained trated throughout		2		
	Answer is partially structured with some 1 linkages and lines of reasoning						
	Answer has a is unstructur	_	etween points and		0		
	 Due to i So the re Or This e.m.f. of And due The pow (IC2 – allow (IC4 – allow (IC6 – needs) 	ace of LDR dencrease in number sistance of contents in great the circuit is to $P = VI$ On the content of the circuit is the content of the circuit is the content of the circuit to be related	mber of (conduction in cuit decreases eater current in circuit the same $P = I^2 R$ Or $P = V$ by the circuit increases	cuit/L cuit/L	DR/resistor For whole circuit) ge carrier density")		6
	Total for que	estion 14					6

Question Number	Answer				
15(a)	Some of the pulse passes/refracts through crack A	(1)			
	(Some of the pulse) <u>reflects</u> from crack (B)	(1)			
	Because the density/material/medium of the crack will be different (to the				
	metal)	(1)	3		
15(b)	Use of speed = distance / time	(1)			
	Correct factor of 2 in converting time or distance	(1)			
	Depth = $4.1 \text{ cm} / 0.041 \text{ m}$, hence crack A	(1)	3		
	Example of calculation				
	Distance = speed × time = 5900 m s ⁻¹ × $\frac{1.4 \times 10^{-5} \text{s}}{2}$ = 0.041 m				
15(c)	Higher frequency means lower wavelength	(1)			
	Therefore greater level of detail possible	(1)	2		
	(MP1 – allow converse statement i.e. "lower frequency means greater wavelength")				
	(MP2 - allow reference to greater resolution or that smaller objects can be				
	seen)				
	Total for question 15		8		

Number	Answer		Mark
16(a)	Corresponding values from best fit line	(1)	
	Use of $P = VI$ Minimum notantial difference = 0.0 V	(1)	3
	Minimum potential difference = 9.0 V	(1)	3
	Example of calculation		
	P = VI		
	At 9.0 V, $P = 9.0 \text{ V} \times 3.9 \text{ A} = 35.1 \text{ W}$		
16(b)(i)	In parallel, each headlight receives 12 V		
	Or In series, each headlight receives 6 V	(1)	
	To a conflict the all also will be see high an account with the con-		
	In parallel, headlights will have higher power/brightness Or In series, headlights will have lower power/brightness	(1)	
	of in series, headinghts will have lower power/originaless	(1)	
	In parallel, if one headlight breaks/fails, the other one remains on		
	Or In series, if one headlight breaks/fails, the other one goes out	(1)	3
16(b)(ii)	Use of $R = V/I$	(1)	
	Use of resistors in parallel formula to calculate R_T in parallel	(1)	
	Reserves is not $4 \times R$ parallel, so student not correct	(1)	3
	Enough of coloulation		
	Example of calculation (Using data from the graph):		
	R of single headlight in parallel = $\frac{V}{I} = \frac{12.0 \text{ V}}{4.6 \text{ A}} = 2.61 \Omega$		
	(for parallel headlights), $\frac{1}{R_T} = \frac{1}{2.61 \Omega} + \frac{1}{2.61 \Omega}$, so $R_T = 1.30 \Omega$		
	<i>R</i> of single headlight in series = $\frac{V}{I} = \frac{6.0 \text{ V}}{3.2 \text{ A}} = 1.88 \Omega$		
	(for series headlights), $R_T = 1.88 \Omega + 1.88 \Omega = 3.76 \Omega$		
	$3.76 / 1.30 = 2.9$, so is $2.9 \times$ less in parallel, not $4 \times$ less		
16(c)	Use of $R = \rho l/A$	(1)	
	Use of $I = nqvA$	(1)	
	Drift velocity = $3.4 \times 10^{-4} \mathrm{ms^{-1}}$	(1)	3
	Example of calculation		
	$R = \rho l/A$, so $A = \frac{\rho l}{R} = \frac{1.72 \times 10^{-8} \Omega \mathrm{m}}{0.0175 \Omega \mathrm{m}^{-1}} = 9.83 \times 10^{-7} \mathrm{m}^2$		
	$v = \frac{4.00 \text{ A}}{8.49 \times 10^{28} \text{m}^{-3} \times 1.60 \times 10^{-19} \text{C} \times 9.83 \times 10^{-7} \text{m}^2} = 3.4 \times 10^{-4} \text{ m s}^{-1}$		
	Total for question 16		12

Question Number	Answer		Mark
17(a)	Electron moves to a higher energy level	(1)	
	Then drops back (down, releasing a photon)	(1)	2
	(MP1 allow electron is excited. MP2 allow electron is de-excited)		
	(MP2 allow returns to ground state)		
17(b)(i)	Use of $v = f\lambda$ with $v = 3.00 \times 10^8 \text{m s}^{-1}$	(1)	
	Use of $E = hf$	(1)	
	Conversion from J to eV	(1)	
	Photon energy = 5.7 eV	(1)	4
	Example of calculation		
	$v = f\lambda$, $f = 3.00 \times 10^8 \text{ m s}^{-1} / 218 \times 10^{-9} \text{ m} = 1.38 \times 10^{15} \text{ Hz}$		
	$E = hf = 6.63 \times 10^{-34} \text{ Js} \times 1.38 \times 10^{15} \text{ Hz} = 9.12 \times 10^{-19} \text{ J}$		
	$E \text{ (in eV)} = 9.12 \times 10^{-19} \text{ J} / 1.60 \times 10^{-19} \text{ J eV}^{-1} = 5.70 \text{ eV}$		
17(b)(ii)	(Differences between) energy levels are discrete		
17(0)(11)	Or only certain jumps/transitions are possible	(1)	
	and a strong str	(-)	
	No difference of 5.7 eV, so not possible (for this photon to be produced)	(1)	2
	(MP2 – allow comment consistent with their calculated value from b(i))		
	(Wif 2 – anow comment consistent with their calculated value from b(1))		
17(c)(i)	Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$	(1)	
	Use of $E_k = \frac{1}{2} mv^2$ with $m = 9.11 \times 10^{-31}$ kg	(1)	
	Maximum possible speed = $1.5 \times 10^6 \mathrm{ms^{-1}}$	(1)	3
	Example of calculation		
	$E_{\rm k} = hf - \Phi = 1.63 \times 10^{-18} \text{J} - 5.89 \times 10^{-19} \text{J} = 1.04 \times 10^{-18} \text{J}$		
	$E_{\rm k} = \frac{1}{2} m v^2$, $v = \sqrt{\frac{1.04 \times 10^{-18} \text{J}}{0.5 \times 9.11 \times 10^{-31} \text{kg}}} = 1.5 \times 10^6 \text{m s}^{-1}$		
17(c)(ii)	$\sqrt{0.5 \times 9.11 \times 10^{-31} \text{kg}}$ MAX 2 from:		
17(0)(11)	There is a minimum/threshold frequency for electron release	(1)	
	There is a minimum timeshold frequency for electron release	(1)	
	Electrons are released instantaneously	(1)	
		(1)	
	(Changing) intensity does not affect KE/speed/release of an electron	(1)	
	MAX 2 from:		
	The energy of a photon increases as frequency increases	(1)	
	 Photon energy has to be greater than the work function 	(1)	
	Thoron energy has to be greater than the work function	,	_
	Each photon only interacts with one electron	(1)	3
	Total for question 17		14
	•		

Question Number	Answer		Mark
18(a)	Wave (on string) is reflected	(1)	
	At the end/peg/bridge	(1)	
	Superposition/interference takes place	(1)	3
18(b)	Use of $v = \sqrt{\frac{T}{\mu}}$	(1)	
	Use of $v = f\lambda$	(1)	
	And $\lambda = 2L$	(1)	
	f = 293 (Hz, which is closest to) String 2	(1)	4
	Example of calculation $v = \sqrt{\frac{T}{\mu}} = \sqrt{\frac{71.5 \text{ N}}{2.03 \times 10^{-3} \text{ kg m}^{-1}}} = 187.7 \text{ m s}^{-1}$		
18(c)	$v = f\lambda$, so $f = 187.7$ m s ⁻¹ / $(2 \times 0.32$ m) = 293 Hz Waves have the same frequency/period	(1)	
. ,	Waves have different speeds/wavelengths	(1)	
	Sound wave has same amplitude for all points and stationary wave does not	(1)	
	Sound waves transfer energy and stationary waves do not	(1)	
	Waves on string are transverse and sound waves are longitudinal	(1)	5
	(MP2 – do not allow contradictions e.g. "they have different speeds but the same wavelength")		
	Total for question 18		12